
Contributing to stxx

by Don Brown

Table of contents

1 Introduction..2

2 Help Wanted Here..2

3 CVS Overview... 2

4 CVS Committer with Secure Shell access... 3

5 Contribution Notes and Tips..3

Copyright © 2005 Jeff Pennal and Don Brown. All rights reserved.

1. Introduction

The stxx project is an Open Source volunteer project released under a very open license. This
means there are many ways to contribute to the project - either with direct participation
(coding, documenting, answering questions, proposing ideas, reporting bugs, suggesting
bug-fixes, etc..) or by resource donations (money, time, publicity, hardware, software,
conference presentations, speeches, etc...).

To begin with, we suggest you to subscribe to the stxx mailing list. Listen-in for a while, to
hear how others make contributions.

You can get your local working copy of the latest and greatest code (which you find in the
stxx module in the CVS code repository. Review the todo list, choose a task (or perhaps you
have noticed something that needs patching). Make the changes, do the testing, generate a
patch, and post to the mailing list or email the committers.

2. Help Wanted Here

The rest of this document is mainly about contributing new or improved code and/or
documentation, but we would also be glad to have extra help in any of the following areas:

• Answering questions on the mailing list.
• Testing stxx (especially its less-frequently-used features) on various configurations and

reporting back.
• Debugging - producing reproduceable test cases and/or finding causes of bugs.
• Specifying/analysing/designing new features - and beyond.
• ... and there is just one other thing - don't forget to tell everyone who asks, how great stxx

is! ;-) The more people that know about and start to use stxx, the larger the pool of
potential contributors there will be.

3. CVS Overview

This is an overview of how to use CVS to participate in stxx development. Do not be afraid -
you cannot accidently destroy the actual code repository, because you are working with a
local copy as an anonymous user. Therefore, you do not have the system permissions to
change anything. You can only update your local repository and compare your revisions with
the real repository.

(Further general CVS usage information is at www.cvshome.org and your local info cvs
pages or man cvs pages or user documentation.)

For example, using the commandline version of cvs, to checkout a copy of stxx you would

Contributing to stxx

Page 2
Copyright © 2005 Jeff Pennal and Don Brown. All rights reserved.

http://www.opensource.org/
http://groups.yahoo.com/group/struts-xsl/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/stxx/
http://www.cvshome.org/

enter:

cvs -d
:pserver:anonymous@cvs.stxx.sourceforge.net:/cvsroot/stxx co
stxx

4. CVS Committer with Secure Shell access

After a developer has consistently provided contributions (code, documentation and
discussion), then the rest of the dev community may vote to grant this developer commit
access to CVS.

You will need secure access to the repository to be able to commit patches. Here are some
resources that help to get your machine configured to use the repository over SSH.

• The CVS Book
• www.cvshome.org
• - See the bottom of the page for links to tips for UNIX and Windows. Even if you are on

UNIX, the Windows page will also help.

5. Contribution Notes and Tips

This is a collection of tips for contributing to the project in a manner that is productive for all
parties.

• Every contribution is worthwhile. Even if the ensuing discussion proves it to be
off-beam, then it may jog ideas for other people.

• Use sensible and concise email subject headings. Search engines, and humans trying to
browse a voluminous list, will respond favourably to a descriptive title.

• Start new threads with new Subject for new topics, rather than reusing the previous
Subject line.

• Keep each topic focused. If some new topic arises then start a new discussion. This
leaves the original topic to continue uncluttered.

• Whenever you decide to start a new topic, then start with a fresh new email message
window. Do not use the "Reply to" button, because threaded mail-readers get confused
(they utilise the In-reply-to header). If so, then your new topic will get lost in the
previous thread and go unanswered.

• Prepend your email subject line with a marker when that is appropriate, e.g. [Patch],
[Proposal], [RT] (Random Thought which quickly blossom into research topics :-),
[STATUS] (development status of a certain facility).

• When making changes to XML documentation, or any XML document for that matter,
use a validating parser (one that is tried and true is OpenSP/onsgmls). This procedure will
detect errors without having to go through the whole build docs process to find them.

Contributing to stxx

Page 3
Copyright © 2005 Jeff Pennal and Don Brown. All rights reserved.

http://cvsbook.red-bean.com/
http://www.cvshome.org/
http://www.oasis-open.org/cover/
http://openjade.sourceforge.net/

Do not expect Forrest or the build system to detect the validation errors for you - they can
do it, but that is not their purpose. (Anyway, nsgmls validation error messages are more
informative.)

• Remember that most people are participating in development on a volunteer basis and in
their "spare time". These enthusiasts will attempt to respond to issues. It may take a little
while to get your answers.

• Research your topic thoroughly before beginning to discuss a new development issue.
Search and browse through the email archives - your issue may have been discussed
before. Do not just perceive a problem and then rush out with a question - instead, delve.

• Try to at least offer a partial solution and not just a problem statement.
• Take the time to clearly explain your issue and write a concise email message. Less

confusion facilitates fast and complete resolution.
• Do not bother to send an email reply that simply says "thanks". When the issue is

resolved, that is the finish - end of thread. Reduce clutter.
• You would usually do any development work against the HEAD branch of CVS.
• When sending a patch, you usually do not need to worry about which CVS branch it

should be applied to. The maintainers of the repository will decide.
• If an issue starts to get bogged down in list discussion, then it may be appropriate to go

into private off-list discussion with a few interested other people. Spare the list from the
gory details. Report a summary back to the list to finalise the thread.

• Become familiar with the mailing lists. As you browse and search, you will see the way
other people do things. Follow the leading examples.

This page is based off the Contributing to Forrest page

Contributing to stxx

Page 4
Copyright © 2005 Jeff Pennal and Don Brown. All rights reserved.

http://xml.apache.org/forrest/contrib.html

	1 Introduction
	2 Help Wanted Here
	3 CVS Overview
	4 CVS Committer with Secure Shell access
	5 Contribution Notes and Tips

